Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
J Cereb Blood Flow Metab ; : 271678X241227022, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639015

RESUMO

With a foundation built upon initial work from the 1980s demonstrating graft viability in cerebral ischemia, stem cell transplantation has shown immense promise in promoting survival, enhancing neuroprotection and inducing neuroregeneration, while mitigating both histological and behavioral deficits that frequently accompany ischemic stroke. These findings have led to a number of clinical trials that have thoroughly supported a strong safety profile for stem cell therapy in patients but have generated variable efficacy. As preclinical evidence continues to expand through the investigation of new cell lines and optimization of stem cell delivery, it remains critical for translational models to adhere to the protocols established through basic scientific research. With the recent shift in approach towards utilization of stem cells as a conjunctive therapy alongside standard thrombolytic treatments, key issues including timing, route of administration, and stem cell type must each be appropriately translated from the laboratory in order to resolve the question of stem cell efficacy for cerebral ischemia that ultimately will enhance therapeutics for stroke patients towards improving quality of life.

2.
Stem Cells Transl Med ; 13(2): 177-190, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38016184

RESUMO

Stroke is a leading cause of death in the US and around the world but with limited treatment options. Survivors often present with long-term cognitive and neurological deficits. Stem cell-based therapy has emerged as a potential treatment for stroke. While stem cell transplantation in stroke has reached clinical trials, mostly safety outcomes have been reported with efficacy readouts warranting more studies. In an effort to optimize the stem cell regimen for stroke, here we conducted vis-a-vis comparison of different routes of transplantation, namely, intracerebral, intraarterial, and intranasal delivery of expanded human CD34 + stem cells, called ProtheraCytes, in the established stroke model of transient middle cerebral artery occlusion (MCAO) using adult Sprague-Dawley rats. After adjusting for the dose and subacute timing of cell delivery, animals were randomly assigned to receive either ProtheraCytes or vehicle. Motor and neurological assays from days 7 to 28 post-stroke revealed significant functional recovery across all 3 delivery routes of ProtheraCytes compared to vehicle-treated stroke rats. Additionally, ProtheraCytes-transplanted stroke rats displayed significantly reduced infarct size and cell loss in the peri-infarct area coupled with enhanced neurogenesis and angiogenesis compared to vehicle-treated stroke rats. These results highlight the safety and efficacy of transplanting ProtheraCytes, including via the minimally invasive intranasal route, in conferring robust and stable behavioral and histological positive outcomes in experimental stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/patologia , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/patologia , Células-Tronco/patologia , Neurogênese , Isquemia Encefálica/terapia , Modelos Animais de Doenças , Recuperação de Função Fisiológica
3.
Cells ; 12(19)2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37830562

RESUMO

The potential of perinatal tissues to provide cellular populations to be used in different applications of regenerative medicine is well established. Recently, the efforts of researchers are being addressed regarding the evaluation of cell products (secreted molecules or extracellular vesicles, EVs) to be used as an alternative to cellular infusion. The data regarding the effective recapitulation of most perinatal cells' properties by their secreted complement point in this direction. EVs secreted from perinatal cells exhibit key therapeutic effects such as tissue repair and regeneration, the suppression of inflammatory responses, immune system modulation, and a variety of other functions. Although the properties of EVs from perinatal derivatives and their significant potential for therapeutic success are amply recognized, several challenges still remain that need to be addressed. In the present review, we provide an up-to-date analysis of the most recent results in the field, which can be addressed in future research in order to overcome the challenges that are still present in the characterization and utilization of the secreted complement of perinatal cells and, in particular, mesenchymal stromal cells.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Geleia de Wharton , Gravidez , Feminino , Humanos , Medicina Regenerativa/métodos , Cicatrização , Vesículas Extracelulares/fisiologia
4.
Cell Transplant ; 32: 9636897231184596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37515536

RESUMO

The immense neuroinflammation induced by multiple sclerosis (MS) promotes a favorable environment for ischemic stroke (IS) development, making IS a deadly complication of MS. The overlapping inflammation in MS and IS is a prelude to the vascular pathology, and an inherent cell death mechanism that exacerbates neurovascular unit (NVU) impairment in the disease progression. Despite this consequence, no therapies focus on reducing IS incidence in patients with MS. To this end, the preclinical and clinical evidence we review here argues for cell-based regenerative medicine that will augment the NVU dysfunction and inflammation to ameliorate IS risk.


Assuntos
AVC Isquêmico , Esclerose Múltipla , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/tratamento farmacológico , Esclerose Múltipla/complicações , Esclerose Múltipla/terapia , Inflamação , Células-Tronco/metabolismo
5.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445778

RESUMO

Accumulating evidence suggests the critical role of the gut-brain axis (GBA) in Parkinson's disease (PD) pathology and treatment. Recently, stem cell transplantation in transgenic PD mice further implicated the GBA's contribution to the therapeutic effects of transplanted stem cells. In particular, intravenous transplantation of human umbilical-cord-blood-derived stem/progenitor cells and plasma reduced motor deficits, improved nigral dopaminergic neuronal survival, and dampened α-synuclein and inflammatory-relevant microbiota and cytokines in both the gut and brain of mouse and rat PD models. That the gut robustly responded to intravenously transplanted stem cells and prompted us to examine in the present study whether direct cell implantation into the gut of transgenic PD mice would enhance the therapeutic effects of stem cells. Contrary to our hypothesis, results revealed that intragut transplantation of stem cells exacerbated motor and gut motility deficits that corresponded with the aggravated expression of inflammatory microbiota, cytokines, and α-synuclein in both the gut and brain of transgenic PD mice. These results suggest that, while the GBA stands as a major source of inflammation in PD, targeting the gut directly for stem cell transplantation may not improve, but may even worsen, functional outcomes, likely due to the invasive approach exacerbating the already inflamed gut. The minimally invasive intravenous transplantation, which likely avoided worsening the inflammatory response of the gut, appears to be a more optimal cell delivery route to ameliorate PD symptoms.


Assuntos
Doença de Parkinson , Humanos , Ratos , Animais , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Substância Negra/metabolismo , Transplante de Células-Tronco , Citocinas/metabolismo
7.
Cell Transplant ; 32: 9636897231158967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36919673

RESUMO

The field of stem cell therapy is growing rapidly and hopes to offer an alternative solution to diseases that are historically treated medically or surgically. One such focus of research is the treatment of medically refractory epilepsy, which is traditionally approached from a surgical or interventional standpoint. Research shows that stem cell transplantation has potential to offer significant benefits to the epilepsy patient by reducing seizure frequency, intensity, and neurological deficits that often result from the condition. This review explores the basic science progress made on the topic of stem cells and epilepsy by focusing on experiments using animal models and highlighting the most recent developments from the last 4 years.


Assuntos
Epilepsia , Transplante de Células-Tronco , Células-Tronco , Epilepsia/cirurgia , Epilepsia/terapia , Convulsões/terapia
8.
Stem Cell Res Ther ; 14(1): 10, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36691091

RESUMO

BACKGROUND: Mesenchymal stromal cell (MSC) transplantation therapy is a promising therapy for stroke patients. In parallel, rehabilitation with physical exercise could ameliorate stroke-induced neurological impairment. In this study, we aimed to clarify whether combination therapy of intracerebral transplantation of human modified bone marrow-derived MSCs, SB623 cells, and voluntary exercise with running wheel (RW) could exert synergistic therapeutic effects on a rat model of ischemic stroke. METHODS: Wistar rats received right transient middle cerebral artery occlusion (MCAO). Voluntary exercise (Ex) groups were trained in a cage with RW from day 7 before MCAO. SB623 cells (4.0 × 105 cells/5 µl) were stereotactically injected into the right striatum at day 1 after MCAO. Behavioral tests were performed at day 1, 7, and 14 after MCAO using the modified Neurological Severity Score (mNSS) and cylinder test. Rats were euthanized at day 15 after MCAO for mRNA level evaluation of ischemic infarct area, endogenous neurogenesis, angiogenesis, and expression of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF). The rats were randomly assigned to one of the four groups: vehicle, Ex, SB623, and SB623 + Ex groups. RESULTS: SB623 + Ex group achieved significant neurological recovery in mNSS compared to the vehicle group (p < 0.05). The cerebral infarct area of SB623 + Ex group was significantly decreased compared to those in all other groups (p < 0.05). The number of BrdU/Doublecortin (Dcx) double-positive cells in the subventricular zone (SVZ) and the dentate gyrus (DG), the laminin-positive area in the ischemic boundary zone (IBZ), and the mRNA level of BDNF and VEGF in SB623 + Ex group were significantly increased compared to those in all other groups (p < 0.05). CONCLUSIONS: This study suggests that combination therapy of intracerebral transplantation SB623 cells and voluntary exercise with RW achieves robust neurological recovery and synergistically promotes endogenous neurogenesis and angiogenesis after cerebral ischemia, possibly through a mechanism involving the up-regulation of BDNF and VEGF.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Humanos , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Medula Óssea/metabolismo , Ratos Wistar , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/terapia , Infarto da Artéria Cerebral Média/terapia , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/metabolismo , Células Estromais/metabolismo
9.
CNS Neurosci Ther ; 29(2): 493-497, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36478506

RESUMO

Interleukin (IL)-6 is a unique cytokine due to its dual signaling, with one pathway being pro-inflammatory (trans) and the other homeostatic (classical). Both of these pathways have been implicated in neuroinflammation following stroke, with initial inflammatory mechanisms being protective and later anti-inflammatory signaling promoting ischemic tissue recovery. IL-6 plays a major role in stroke pathology. However, given these distinctive IL-6 signaling consequences, IL-6 is a difficult cytokine to target for stroke therapies. Recent research suggests that the ratio between the pro-inflammatory binary IL6:sIL6R complex and the inactive ternary IL6:sIL6R:sgp130 complex may be a novel way to measure IL-6 signaling at different time points following ischemic injury. This ratio may approximate functional consequences on individualized stroke therapies, allowing clinicians to determine whether IL-6 agonists or antagonists should be used at specific time points.


Assuntos
Interleucina-6 , Acidente Vascular Cerebral , Humanos , Interleucina-6/metabolismo , Citocinas , Receptor gp130 de Citocina/metabolismo , Anti-Inflamatórios
10.
Neuromolecular Med ; 25(1): 120-124, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35857254

RESUMO

Transfer of healthy mitochondria from mesenchymal stem cells (MSCs) to ischemic neurons represents a potent stroke therapeutic. MSCs were grown under ambient conditions (nMSCs) or a metabolic switching paradigm by alternating galactose and glucose in medium (sMSCs) and then assayed for oxygen consumption rates using the Seahorse technology. Subsequently, primary neurons were subjected to oxygen glucose deprivation (OGD) and then co-cultured with either nMSCs or sMSCs. Compared to nMSCs, sMSCs displayed higher basal energy production, larger spare respiratory capacity, greater ATP production, and decreased proton leak. Co-culture of OGD-exposed neurons with sMSCs conferred greater cell viability, enhanced cell metabolism, reduced mitochondrial reactive oxidative species mRNA, and elevated mitochondria ATP mRNA than those cultured with nMSCs. Metabolic switching produces "super" mitochondria that may underlie the therapeutic benefit of using sMSCs to treat ischemic cells.


Assuntos
Células-Tronco Mesenquimais , Mitocôndrias , Células Cultivadas , Mitocôndrias/metabolismo , Oxigênio , Trifosfato de Adenosina/metabolismo , Neurônios/metabolismo , RNA Mensageiro , Glucose/metabolismo
11.
Neuroprotection ; 1(2): 130-138, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38188233

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly fatal neurological disease characterized by upper and lower motor neuron degeneration. Though typically idiopathic, familial forms of ALS are commonly comprised of a superoxide dismutase 1 (SOD1) mutation. Basic science frequently utilizes SOD1 models in vitro and in vivo to replicate ALS conditions. Therapies are sparse; those that exist on the market extend life minimally, thus driving the demand for research to identify novel therapeutics. Transplantation of stem cells is a promising approach for many diseases and has shown efficacy in SOD1 models and clinical trials. The underlying mechanism for stem cell therapy presents an exciting venue for research investigations. Most notably, the paracrine actions of stem cell-derived extracellular vesicles (EVs) have been suggested as a potent mitigating factor. This literature review focuses on the most recent preclinical research investigating cell-free methods for treating ALS. Various avenues are being explored, differing on the EV contents (protein, microRNA, etc.) and on the cell target (astrocyte, endothelial cell, motor neuron-like cells, etc.), and both molecular and behavioral outcomes are being examined. Unfortunately, EVs may also play a role in propagating ALS pathology. Nonetheless, the overarching goal remains clear; to identify efficient cell-free techniques to attenuate the deadly consequences of ALS.

12.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555094

RESUMO

Stem cell transplantation is historically understood as a powerful preclinical therapeutic following stroke models. Current clinical strategies including clot busting/retrieval are limited by their time windows (tissue plasminogen activator: 3-4 h) and inevitable reperfusion injuries. However, 24+ h post-stroke, stem cells reduce infarction size, improve neurobehavioral performance, and reduce inflammatory agents including interleukins. Typically, interleukin-6 (IL-6) is regarded as proinflammatory, and thus, preclinical studies often discuss it as beneficial for neurological recuperation when stem cells reduce IL-6's expression. However, some studies have also demonstrated neurological benefit with upregulation of IL-6 or preconditioning of stem cells with IL-6. This review specifically focuses on stem cells and IL-6, and their occasionally disparate, occasionally synergistic roles in the setting of ischemic cerebrovascular insults.


Assuntos
Interleucina-6 , Acidente Vascular Cerebral , Humanos , Ativador de Plasminogênio Tecidual/uso terapêutico , Acidente Vascular Cerebral/metabolismo , Transplante de Células-Tronco , Interleucinas
13.
Neuroreport ; 33(15): 635-640, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36126260

RESUMO

OBJECTIVE: Strokes represent as one of the leading causes of death and disability in the USA, however, there is no optimal treatment to reduce the occurrence or improve prognosis. Preconditioning of tissues triggers ischemic tolerance, a physiological state that may involve a metabolic switch (i.e. from glycolysis to oxidative phosphorylation or OxPhos) to preserve tissue viability under an ischemic insult. Here, we hypothesized that metabolic switching of energy source from glucose to galactose in cultured mesenchymal stem cells (MSCs) stands as an effective OxPhos-enhancing strategy. METHODS: MSCs were grown under ambient condition (normal MSCs) or metabolic switching paradigm (switched MSCs) and then assayed for oxygen consumption rates (OCR) and extracellular acidification rate (ECAR) using the Seahorse technology to assess mitochondrial respiration. RESULTS: Normal MSCs showed a lower OCR/ECAR ratio than switched MSCs at baseline (P < 0.0001), signifying that there were greater levels of OxPhos compared to glycolysis in switched MSCs. By modulating the mitochondrial metabolism with oligomycin (time points 4-6), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (7-9), and rotenone and antimycin (time points 10-12), switched MSCs greater reliance on OxPhos was further elucidated (time points 5-12; P < 0.0001; time point 4; P < 0.001). CONCLUSION: The metabolic switch from glycolytic to oxidative metabolism amplifies the OxPhos potential of MSCs, which may allow these cells to afford more robust therapeutic effects against neurological disorders that benefit from ischemic tolerance.


Assuntos
Células-Tronco Mesenquimais , Fosforilação Oxidativa , Galactose/metabolismo , Glucose/metabolismo , Glicólise/fisiologia , Células-Tronco Mesenquimais/metabolismo , Oligomicinas/metabolismo , Rotenona/farmacologia
14.
Front Cell Dev Biol ; 10: 798826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309929

RESUMO

Stem cells, specifically embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), induced pluripotent stem cells (IPSCs), and neural progenitor stem cells (NSCs), are a possible treatment for stroke, Parkinson's disease (PD), and Huntington's disease (HD). Current preclinical data suggest stem cell transplantation is a potential treatment for these chronic conditions that lack effective long-term treatment options. Finding treatments with a wider therapeutic window and harnessing a disease-modifying approach will likely improve clinical outcomes. The overarching concept of stem cell therapy entails the use of immature cells, while key in recapitulating brain development and presents the challenge of young grafted cells forming neural circuitry with the mature host brain cells. To this end, exploring strategies designed to nurture graft-host integration will likely enhance the reconstruction of the elusive neural circuitry. Enriched environment (EE) and exercise facilitate stem cell graft-host reconstruction of neural circuitry. It may involve at least a two-pronged mechanism whereby EE and exercise create a conducive microenvironment in the host brain, allowing the newly transplanted cells to survive, proliferate, and differentiate into neural cells; vice versa, EE and exercise may also train the transplanted immature cells to learn the neurochemical, physiological, and anatomical signals in the brain towards better functional graft-host connectivity.

15.
Cell Transplant ; 30: 9636897211035715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34559583

RESUMO

Traumatic brain injury (TBI) is a pervasive and damaging form of acquired brain injury (ABI). Acute, subacute, and chronic cell death processes, as a result of TBI, contribute to the disease progression and exacerbate outcomes. Extended neuroinflammation can worsen secondary degradation of brain function and structure. Mesenchymal stem cell transplantation has surfaced as a viable approach as a TBI therapeutic due to its immunomodulatory and regenerative features. This article examines the role of inflammation and cell death in ABI as well as the effectiveness of bone marrow-derived mesenchymal stem/stromal cell (BM-MSC) transplants as a treatment for TBI. Furthermore, we analyze new studies featuring transplanted BM-MSCs as a neurorestorative and anti-inflammatory therapy for TBI patients. Although clinical trials support BM-MSC transplants as a viable TBI treatment due to their promising regenerative characteristics, further investigation is imperative to uncover innovative brain repair pathways associated with cell-based therapy as stand-alone or as combination treatments.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Humanos
16.
J Cereb Blood Flow Metab ; 41(10): 2797-2799, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34187231

RESUMO

The last 50 years have witnessed the translation of stem cell therapy from the laboratory to the clinic for treating brain disorders, in particular stroke. From the focal stereotaxic transplantation to the minimally invasive intravenous and intraarterial delivery, stem cells display the ability to replenish injured cells and to secrete therapeutic molecules, altogether promoting brain repair. The increased stroke incidence in COVID-19 survivors poses as a new disease indication for cell therapy, owing in part to the cells' robust anti-inflammatory properties. Optimization of the cell transplant regimen will ensure the safe and effective clinical application of cell therapy in stroke and relevant neurological disorders.


Assuntos
COVID-19/complicações , Transplante de Células-Tronco , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/terapia , Animais , Encéfalo/patologia , COVID-19/diagnóstico , Humanos , Incidência , Medicina Regenerativa/métodos , SARS-CoV-2/isolamento & purificação , Transplante de Células-Tronco/métodos , Acidente Vascular Cerebral/patologia
17.
Front Pharmacol ; 12: 596287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815100

RESUMO

Epilepsy stands as a life-threatening disease that is characterized by unprovoked seizures. However, an important characteristic of epilepsy that needs to be examined is the neuropsychiatric aspect. Epileptic patients endure aggression, depression, and other psychiatric illnesses. Therapies for epilepsy can be divided into two categories: antiepileptic medications and surgical resection. Antiepileptic drugs are used to attenuate heightened neuronal firing and to lessen seizure frequency. Alternatively, surgery can also be conducted to physically cut out the area of the brain that is assumed to be the root cause for the anomalous firing that triggers seizures. While both treatments serve as viable approaches that aim to regulate seizures and ameliorate the neurological detriments spurred by epilepsy, they do not serve to directly counteract epilepsy's neuropsychiatric traits. To address this concern, a potential new treatment involves the use of stem cells. Stem cell therapy has been employed in experimental models of neurological maladies, such as Parkinson's disease, and neuropsychiatric illnesses like depression. Cell-based treatments for epilepsy utilizing stem cells such as neural stem cells (NSCs), mesenchymal stem cells (MSCs), and interneuron grafts have been explored in preclinical and clinical settings, highlighting both the acute and chronic stages of epilepsy. However, it is difficult to create an animal model to capitalize on all the components of epilepsy due to the challenges in delineating the neuropsychiatric aspect. Therefore, further preclinical investigation into the safety and efficacy of stem cell therapy in addressing both the neurological and the neuropsychiatric components of epilepsy is warranted in order to optimize cell dosage, delivery, and timing of cell transplantation.

18.
Antioxidants (Basel) ; 10(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33653014

RESUMO

Stroke is a life-threatening condition that is characterized by secondary cell death processes that occur after the initial disruption of blood flow to the brain. The inability of endogenous repair mechanisms to sufficiently support functional recovery in stroke patients and the inadequate treatment options available are cause for concern. The pathology behind oxidative stress in stroke is of particular interest due to its detrimental effects on the brain. The oxidative stress caused by ischemic stroke overwhelms the neutralization capacity of the body's endogenous antioxidant system, which leads to an overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and eventually results in cell death. The overproduction of ROS compromises the functional and structural integrity of brain tissue. Therefore, it is essential to investigate the mechanisms involved in oxidative stress to help obtain adequate treatment options for stroke. Here, we focus on the latest preclinical research that details the mechanisms behind secondary cell death processes that cause many central nervous system (CNS) disorders, as well as research that relates to how the neuroprotective molecular mechanisms of pituitary adenylate cyclase-activating polypeptides (PACAPs) could make these molecules an ideal candidate for the treatment of stroke.

19.
Neurosci Biobehav Rev ; 122: 38-65, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359391

RESUMO

Hormone therapy, primarily progesterone and progestins, for central nervous system (CNS) disorders represents an emerging field of regenerative medicine. Following a failed clinical trial of progesterone for traumatic brain injury treatment, attention has shifted to the progestin Nestorone for its ability to potently and selectively transactivate progesterone receptors at relatively low doses, resulting in robust neurogenetic, remyelinating, and anti-inflammatory effects. That CNS disorders, including multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), spinal cord injury (SCI), and stroke, develop via demyelinating, cell death, and/or inflammatory pathological pathways advances Nestorone as an auspicious candidate for these disorders. Here, we assess the scientific and clinical progress over decades of research into progesterone, progestins, and Nestorone as neuroprotective agents in MS, ALS, SCI, and stroke. We also offer recommendations for optimizing timing, dosage, and route of the drug regimen, and identifying candidate patient populations, in advancing Nestorone to the clinic.


Assuntos
Doenças do Sistema Nervoso , Fármacos Neuroprotetores , Progestinas , Humanos , Doenças do Sistema Nervoso/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Progesterona , Progestinas/uso terapêutico , Receptores de Progesterona , Traumatismos da Medula Espinal
20.
J Cereb Blood Flow Metab ; 41(7): 1707-1720, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33222596

RESUMO

Perinatal hypoxic ischemic encephalopathy (HIE) results in serious neurological dysfunction and mortality. Clinical trials of multilineage-differentiating stress enduring cells (Muse cells) have commenced in stroke using intravenous delivery of donor-derived Muse cells. Here, we investigated the therapeutic effects of human Muse cells in an HIE model. Seven-day-old rats underwent ligation of the left carotid artery then were exposed to 8% oxygen for 60 min, and 72 hours later intravenously transplanted with 1 × 104 of human-Muse and -non-Muse cells, collected from bone marrow-mesenchymal stem cells as stage-specific embryonic antigen-3 (SSEA-3)+ and -, respectively, or saline (vehicle) without immunosuppression. Human-specific probe revealed Muse cells distributed mainly to the injured brain at 2 and 4 weeks, and expressed neuronal and glial markers until 6 months. In contrast, non-Muse cells lodged in the lung at 2 weeks, but undetectable by 4 weeks. Magnetic resonance spectroscopy and positron emission tomography demonstrated that Muse cells dampened excitotoxic brain glutamatergic metabolites and suppressed microglial activation. Muse cell-treated group exhibited significant improvements in motor and cognitive functions at 4 weeks and 5 months. Intravenously transplanted Muse cells afforded functional benefits in experimental HIE possibly via regulation of glutamate metabolism and reduction of microglial activation.


Assuntos
Diferenciação Celular , Glutamatos/metabolismo , Hipóxia-Isquemia Encefálica/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Microglia/fisiologia , Animais , Animais Recém-Nascidos , Humanos , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Injeções Intravenosas , Microglia/citologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA